
Abstract

The management of modern distributed systems is com-

plicated by scale and dynamics. Scalable, decoupled com-

munication establishes flexible, loosely coupled component

relationships, and these relationships help meet the present

demands on management. However, traditional decoupled

addressing mechanisms tend to focus the addressing on only

one of the parties involved in communication while, in gen-

eral, a communication relationship involves a sender, com-

municated content, and receivers. The state of all three are

simultaneously relevant to correctness of a management

relationship and its communications. We introduce Selective

Notification, a scalable, decoupled event dissemination

architecture supporting simultaneous and combined

addressing of senders, receivers, and events. We demon-

strate its application to programming dynamic, scalable

management relationships. We then discuss its implementa-

tion, and present measurements of its effective capabilities.

1. Introduction

Very large networked information systems—with mil-

lions of components—have become crucial to many organi-

zations, both military and civilian. Yet they are inescapably

exposed to a wide variety of traumas including extreme

environmental conditions, failures of operating software,

and losses of available resources because of malicious or

accidental damage. In order to provide dependable service

such networks have to respond to these changes with

explicit management because, without response, depend-

ability would be limited by entropy. The required responses

may be large and complex, necessitating a sophisticated

management service architecture.

In this paper we introduce a communication mechanism

for facilitating the distributed management of networked

information systems, Selective Notification, that provides

symmetrically addressed, decoupled event dissemination. It

permits reconfiguration to be commanded quickly, effi-

ciently and in a highly scalable way. This type of reconfigu-

ration can be used for error recovery. Coupling this with a

sense/analysis error-detection capability yields an architec-

ture for hierarchical management in support of general fault

tolerance mechanisms for networked information systems.

Researchers are pursuing more dynamic and less hierar-

chical management structures. Yet there is still merit to the

hierarchical approach because of its ability to respond in a

coordinated way to damage or attacks that are geographi-

cally diverse. The combination of hierarchical and widely

distributed management has significant potential in complex

systems, and more generally, management hierarchy must

apply to increasingly large and dynamic information

systems [10].

The elements of an approach to hierarchical management

with increased dynamics may be found in the form of a

loosely coupled system [5]. Our proposed mechanism is a

general architecture, illustrated by the intentionally general

example of Figure 1. A very large collection (millions) of

nodes of type A (e.g., those requiring management) operate

in coordination with a smaller collection of nodes of type B

(e.g., those determining management actions). The hierar-

chical relationships between them are established dynami-

cally, being based on the current state of participants and

third parties such as trust authorities. In this example, nodes

interact with those of the same shade, where shade indicates

some aspect of a node’s state. As their modelled state (shade

in the figure) change, their management relationships are

automatically updated to reflect appropriate connections.

Thereby, these relationships remain current and appropriate

over highly dynamic system state. This occurs transparently,

without requiring any node to know the state of any other.

Consider the nodes of Figure 1 to be managers over a

large distributed system. In general, the appropriateness of

their intercommunication might involve any combination of

the state of senders, content, and receivers. This requires a

communication service addressing all three elements. It is in

their simultaneous combination that loosely coupled man-

agement relationships may be achieved. By contrast, exist-

ing scalable services such as publish/subscribe support

asymmetric addressing. The questions we address are: (1)

whether a symmetrically addressed mechanism can scale
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with reasonable performance; and (2) whether it can be used

effectively for expressing management relationships.

Selective Notification is a symmetrically addressed,

decoupled event service that deals with both of these ques-

tions. In this paper we present Selective Notification’s core

concept, symmetric indirect addressing, and then we dem-

onstrate its utility through application in a hypothetical man-

agement scenario. This is followed by exposition of its

implementation as data transforms as well as modifications

and extensions to Siena [2], a scalable publish/subscribe

architecture.

Our assessment of feasibility is based on experiments

with a full implementation. The results of these experiments

allow us to model its performance for systems far larger

than we can implement directly. We conclude that symmet-

rically addressed decoupled communication scales for hier-

archical event dissemination in loosely coupled

management.

2. Selective Notification

Clients of decoupled communication interact without

having knowledge of one another. More specifically, spa-

tially decoupled communication [5] allows clients to inter-

act despite not knowing each others’ location, quantity,

distribution, or state. Property-based communication is a

particularly useful form that allows otherwise decoupled

components to communicate by describing—rather than

explicitly naming—relevant objects in communication rela-

tionships. Communication in this form involves two key

elements:

• Property addressable objects: Some objects advertise a

model of their properties to the communications service.

An object’s properties constitute its address.

• Descriptive, indirect addresses: Clients communicate by

describing, (often through constraints) properties of

addressable objects. A description forms an indirect

address of the relevant targets for communication.

Several forms are in use today, and they differ in which

objects are addressable and which objects perform address-

ing. Three common forms are summarized in Table 1. They

are content-based publish/subscribe [3, 4], intentionally

addressed one-to-many messaging [1], and sender qualified

messaging. If these decoupled addressing mechanisms were

used by a loosely coupled hierarchy such as that illustrated

in Figure 1, several requirements might arise. A node under-

taking reconfiguration might apply intentional addressing to

indirectly target an event to managed nodes, doing so by

describing the states of their internal security alarms for

example. Likewise, managed nodes might apply sender

qualification to describe necessary properties of high-level

Figure 1. General networked information system management relationships.

Third-Party
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Table 1: Summary of traditional, decoupled, property 

based addressing schemes.
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managers from which they will receive commands, requir-

ing proper authority for example. However, the architectures

of Table 1 do not support delivery of communication events

based upon simultaneous consideration of all three address-

ing mechanisms.

2.1 The concept of Selective Notification

Selective Notification combines content, sender, and

receiver addressing in a unified, simultaneously applied

addressing mechanism, and permits a scalable implementa-

tion. We refer to the mechanism as the Selective Notification

service or just Selective Notification where the meaning is

clear. We refer to events using this mechanism as Selective

Notification events. Selective Notification event delivery is

illustrated in Figure 2. A message sending client is shown

on the left and an array of potential receivers clients are

shown on the right. Both senders and receivers advertise

their local state to form their respective addresses. In the fig-

ure, each client’s advertised state is represented by an

attached “puzzle-piece”. Sender addresses are lightly

shaded, while receiver addresses are white. Sender qualifi-

cation is shown by sender puzzle pieces attached to receiv-

ers, and intentional addressing is shown with receiver

puzzle pieces attached to senders. The characteristics that

define receiver content of interest are depicted by a black

puzzle-piece at each receiver.

Senders push events to the communications system. Fig-

ure 2 shows a sender emitting an event. Its content is a U-

shaped black puzzle-piece. In the notation of this figure, an

address matches an indirect address when their respective

puzzle-pieces “fit together”. The Selective Notification ser-

vice delivers an event to a receiver if and only if intentional

addressing, sender qualification, and content addressing

match. In this example, the sender’s event will be delivered

to receivers 1 and 4. The remaining receivers mismatch in

one or more element of addressing.

3. Related work

Several research groups have applied decoupled com-

munication for the purpose of management, including Soft-

ware Dock [7] and Astrolabe [13]. To our knowledge, the

importance of symmetry in establishing loosely coupled

management relationships has not been discussed.

Skarmeas et al. [11] describe a symmetrically addressed,

decoupled communication mechanism in the form of an

agent blackboard. It was not designed as a scalable architec-

ture.

Overlap in potential between intentional addressing and

publish/subscribe has been applied in many applications,

including sensor networks [9] and the control of robots [6].

Designers of scalable communication mechanisms have also

noted this potential. For example, Siena has been modified

to support intentional addresses [8], while the authors of the

Astrolabe system have proposed using Bloom filters to

achieve publish/subscribe [12].

4. An example application

An example application for Selective Notification

might be defending against a worm. Returning to the illus-

tration of Figure 1, we assume on the order of a million low-

level managers are embedded within a global distribution of

Internet Web servers and several thousand high-level man-

agers are run by service providers. We also assume that the

Web servers are owned by a fictitious corporation, “Macro-

corp”, that Macrocorp obtains security service from a sec-

ond fictitious corporation, “Intellimune”, and that

Macrocorp cooperates with government emergency

response activities.

Our hypothesized scenario assumes the spread of a worm

that, like most worms, exploits a bug in network code to

self-replicate (in this case, in Web servers). Unchecked, the

worm might undermine Macrocorp’s global application.

Fortunately, Intellimune and government systems monitor

Figure 2. Selective Notification Addressing
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for attacks against common software applications. Detecting

the attack, they manage systems such as Macrocorp’s

through symmetrically addressed decoupled communication

policies. Our implementation uses an XML syntax but, in

this example, a more human-readable syntax is used.

4.1 Modelling system state

Our model of Web servers, i.e., the state that Web servers

advertise as their address, is:

<Model WebService> = {

String application;

String application_version;

String serviceIPAddress;

int servicePort;

DomainedSet{docs, cgi, xml} services;

float load}

Models are named elements consisting of typed, named

attributes. Every Web service in our example application

presents an instance of this model to Selective Notification

in which there is an assignment of a value to each model

attribute such as in the following example:

<WebService> = {

application = “IIS”;

application_version = “2.4.0”; 

serviceIPAddress = “128.142.55.55”;

servicePort = 8080; 

services = {docs, cgi};

load = 0.39}

This Web server is free to change its attribute values at any

time. It might, for example, periodically update its load

attribute with its latest calculation. Changes can also include

servers joining and leaving the system. All such changes are

handled automatically by the decoupled communications

aspect of Selective Notification.

Now suppose that Macrocorp agrees to respond to gov-

ernment regional fault-response systems. Such high-level

systems are not allowed to define their own region of com-

mand or trustworthiness. Instead, these are assigned to fault-

response systems by authorized third parties, such as a regu-

lated trust manager. For example, a Northwest regional con-

troller might be assigned the following sender qualifications

by authorized third parties:

<Model FRSystem> = {

String _command_region = “northwest”;

int _trust_level = 4}

Restricted sender qualification within Selective Notification

allows a tiered-authority model of sender state enforcement,

so that increasingly critical state can be managed by increas-

ingly trustworthy elements.

4.2 Connectivity policies

Web servers describe the messages they will receive and

the clients from which they will receive messages through

definition of connectivity policies. For example, the Web

servers in our hypothetical application might register the

following policy:

{<Event> : {

alert == ANY AND

threat_level >= 4}

AND

<Sender == “Controller”> : {

_command_region == “northwest” AND 

_trust_level >= 2}}

OR

{<Event> : {

command == ANY}

   AND

<Sender == “Controller”> : {

entity == “Intellimune” AND 

_command_region == “national”}}

which translates to “Observes command events from any

national Intellimune control system as well as alerts greater

than or equal to threat-level 4 from Northwest controllers

with trust rating greater than or equal to 2”. Once in place,

received events from senders are those for which evaluation

of the connectivity policy expression is true. Thus, Web

servers only receive understandable commands and alerts

from qualified commanders.

4.3 Command and alert events

Assume that a worm has begun propagating through

Macrocorp’s networks. A fault-response system in the

Northwest is the first to detect the worm infection. It deter-

mines that the sensor events are all coming from Web serv-

ers running version 2.4 of “IIS.” First, it reports this to

national fault-response systems. Then, it issues a worm alert

as an event:

Event : 

alert = “worm”;

threat_level = 4;

target = “IIS”;

version = “2.4.*”}

Any receiver of this event will be able to obtain the informa-

tion associated with it by examining the attributes.

Given that Web servers are enforcing the policy defined

above, all Web servers in the Northwest region will receive

this alert. From the alert they can determine whether they

are vulnerable to attack. Meanwhile, the worm continues to

infect the network. Intellimune attempts to halt the attack

with commands to Web servers. Its national fault-response

system has determined that the worm is spreading through a
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vulnerability exposed in CGI-scripts running on version 2.4

of IIS Web servers. Therefore, it issues the following com-

mand event:

<Model == WebServer> : {

application == “IIS” AND

application_version == “2.4” AND

services supersetOf{cgi}}

Event : {

command = “disable_cgi”}

This event contains a preamble that is a selector (intentional

address). It selects Web servers that are running “IIS” ver-

sion 2.4 and support CGI scripts. The event itself is a com-

mand for those Web servers to disable CGI elements. The

goal of this command is to limit the infection by disabling

the worm’s attack vector.

In an attempt to limit the worm’s aggression, Intellimune

emits another command. It has determined that IIS version

2.4 servers showing sustained load are potentially infected.

These servers are ordered to shut-down with the following

command event:

<Model == WebServer> : {

application == “IIS” AND

application_version == “2.4” AND

load > 0.9}

Event : {

command = “shutdown_now”}

This example has demonstrated the delivery of an alert

event and two command events to application components

of an Internet-scale system. The connectivity policies

between managers address properties of senders, receivers

and content. They define a total connectivity policy target-

ing management at run-time based on the current state of

participants.

5. Implementation

We now proceed to describe our implementation of the

Selective Notification service. We note that it has two limi-

tations: (1) not all clients are supported as simultaneous

senders if efficiency is to be maintained; and (2) it necessi-

tates more traffic in the overlay network than is strictly

required for content-based forwarding.

Our implementation was developed, in part, by modify-

ing the core data structures and algorithms of Siena [2]

(Scalable Internet Event Notification Architecture)—a con-

tent-based, publish/subscribe infrastructure.

Siena’s core data model is Filters and Notifications. A

Notification is a communicated event consisting of a set of

typed attribute/value pairs. Filters are Boolean conjunctive

expressions over notification attributes. They are used to

define content subscriptions issued by potential receivers.

Siena operates as a distributed tree of dispatch servers, an

example of which is shown in Figure 3. Dispatchers perform

two key algorithms. These are:

• Filter Propagation: A subscribed filter, f, propagates up

the dispatcher tree until it arrives at the root of the tree,

or at a dispatcher with a filter logically covering it, i.e., a

filter that passes a superset of that passed by f. Dispatch-

ers store received filters. Siena scales very well when

most subscribed filters are covered by others as occurs

frequently in publish/subscribe applications.

• Notification Forwarding: A published notification, p, is

propagated up to the root of the dispatcher tree. It is also

sent down any sub-tree from which a matching filter was

received. As a result, notifications are only forwarded to

sub-trees with receivers.

5.1 Data transformations

The Selective Notification service transforms receiver

policies and Selective Notification events into publish/sub-

scribe filters and notifications, respectively. Figure 4

sketches the transformation of data constructs from the

Selective Notification service to Siena publish/subscribe.

Shapes represent data objects. Arrows represent the prod-

ucts of transformations. “Plus Signs” indicate the combina-

tion of two data objects in a transform.

Siena already supports content-based addressing. The

transformation of sender qualification is straightforward,

attributes and constraints are stored in notifications and fil-

ters, respectively. The transformation of intentional address-

ing is more complex and best illustrated by example.

Consider a receiver with an attribute called “load” with

value “0.3”. If the receiver advertises the selection function

“X<load<Y,” then this is translated to a Siena filter of the

form “X<0.3 and 0.3<Y.” When a sender selects a set of

receivers by load, it does so by sending a notification defin-

ing values for X and Y.

Figure 3. Siena operates as a distributed hierarchy of dispatchers and clients.

Dispatcher

Client

Notification
Forwarding
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5.2 Modifications to publish/subscribe 

infrastructure

The second part of the implementation required modifi-

cation to the Siena dispatcher algorithms and data structures

available at the time this work was done. This is because the

characteristics of Selective Notification are not equivalent to

publish/subscribe. If it were applied without change to

Siena, our transformed input would: (1) not take advantage

of the scalability of Siena filters; (2) fail to deliver most rel-

evant notifications; and (3) allow clients to lie arbitrarily

about their attribute qualifications. If data transforms only

were applied, Selective Notification would be a nearly-

pathological application of publish/subscribe. Therefore,

significant alterations to algorithms have been made while

preserving the two core operations of notification forward-

ing and filter propagation. Briefly, these alterations and

modifications are:

• Notification Persistence: Notifications remain at dis-

patchers for a specified lifetime where they forward to

later subscription filters. In this way, the consistent and

rapid changing of filters for intentional addressing and

sender qualification does not impede reliable delivery of

notifications.

• Filter Coagulation: Intentional addressing does not gen-

erate efficient filter covering relationships. Hence, we

deliberately generalize filters, i.e., make them less spe-

cific, to maintain system scalability. This reduces mes-

sage forwarding efficiency because some messages are

forwarded along paths that will not use them, but aggre-

gation maintains notification delivery reliability, i.e., all

receivers obtain all and only relevant notifications.

• Attribute Authorization and Capability: Clients of Selec-

tive Notification must register for notification and sub-

scription capabilities by “login” with a password. This

restricts clients to stating attributes in models and notifi-

cations for which they are authorized to make claims.

• Third Party Qualifiers: We enable third parties to con-

tribute state to client addressing, for example for trust

management. Third parties must be given permission, by

session key, from the client which they are to augment.

Importantly, a third party may have different authorized

capabilities than the client it augments. This supports

tiered authority models in the use of sender qualification

and intentional addressing.

• Channeling and Event Ordering: Rather than computing

the forwarding path for all events, some events record

their forwarding paths, and others follow these paths.

This allows streams of events to travel to the same set of

receivers, even as their state changes.

6. Measurements of performance and a model 

of scale

The essential practical challenge with Selective Notifi-

cation is maintaining adequate performance with scale both

in terms of network size and rate of change of addresses.

The issue of performance is complex because performance

metrics need to be defined and measured along the spectrum

of dimensions that will affect performance in real systems.

From the perspective of general utility, we consider the fol-

lowing to be the critical metrics:

• Sustainable event delivery time: Time from event issue

to event delivery to all relevant clients.

• Sustainable event throughput: The sustainable rate at

which events can be issued into the service without over-

loading the service.

With those metrics in mind, the key dimensions that affect

performance are:

Figure 4. Data transforms through (a) the Selective Notification service and (b) Siena

Selection Function Template Subscriptions

Sender Qualifiers

(a)

Notifications

Event Content

Siena

Filters

Local Attribute Values

Receiver PolicySelective Notification Event

Local Attribute Values Actual Parameters

(b)
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• The size of the application system as measured by the

total number of independent nodes.

• The addressing policies that describe senders, receivers,

and content simultaneously.

• The rate of change of the state, i.e., addresses being pre-

sented to the Selective Notification mechanism.

In this section, we present the results of experiments to

determine the metrics above for these parameters. Using the

results, we develop implementation performance-driven

models of scale.

6.1 Experimental method

In an effort to evaluate Selective Notification, we have

operated overlay networks on a test-bed of 128 physical

computers, each of which is a dual 400 MHz CPU i86

machine running Red Hat Linux 6.1 with kernel version 2.2.

All software was implemented in Java for runtime 1.4.1.

Network level communication was performed with TCP

sockets over a 100 MBit/sec fully switched Ethernet. Some

computers were dedicated to the execution of Selective

Notification dispatchers and the remainder were used to

execute a hypothetical distributed application. Several

application nodes were located on each physical machine

and this permitted a total of several thousand client nodes to

be constructed. The number of clients varied with the details

of the experiments being conducted but was typically 3,400.

This target system allowed us to demonstrate some

aspects of feasibility. However, this system is clearly not

even close to Internet scale and so we were not able to test

Selective Notification over applications with hundreds of

thousands or millions of clients using it. Instead, we have

measured the maximum, worst-case performance of a single

dispatcher and used the results in an implementation-driven

model of performance of a large system. Assuming that all

dispatchers have the same resources, we have modeled the

worst-case performance of a dispatcher overlay network

using the worst case performance obtained from the single

dispatcher for all dispatchers in the tree (assuming optimal

network-level performance.) From this data, we have mod-

eled the resources required to achieve necessary service

properties in large networks.

6.2 Measurement of dispatcher performance

We assessed dispatcher performance by operating and

measuring a dispatcher in a controlled environment; one in

which all the input factors affecting performance are con-

trolled. These factors were:

• Available Resources: This includes computing hardware,

network resources, and the run-time system environ-

ment.

• Event Forwarding Set Size: The size of the set of sub-

dispatchers and clients to which events are forwarded.

• Event Persistence Lifetime: The persistence lifetime of

event messages.

• Subscription Change Rate: The rate at which clients

modify their state and the rate at which filter coagulation

is performed.

• Connection Policy Complexity: The number of attribute

constraints registered by clients.

Our experimental apparatus, illustrated in Figure 5, is a

“ping-pong” throughput experiment. A single “Pinger”

application sends “ping” messages to “Ponger” applications

in sequence. Ponger applications respond to the Pinger with

a “pong” message. Additionally, Ponger applications gener-

ate broadcast-like background “chatter” messages sent to all

other Pongers. During the entire experiment, Ponger appli-

cations randomly change the values of their client models

(essentially their addresses) at a specified rate, representing

diverse dynamic state change throughout the distributed sys-

tem. These last two conditions emulate a worst-case system

behavior with consistently changing client state and the con-

tinuous broadcast of commands and alerts.

By varying the number of Ponger elements, the rate at

which they chatter, the event-persistence lifetime of chatter,

the size of the Ponger client model, and the rate at which

Pongers change their client model instances, we observe

performance capability with respect to the input parameters

of interest. For purposes of experimentation, each applica-

tion—including each Ponger, the Pinger, and the Selective

Notification dispatcher—were run on separate computers.

Figure 5.  An experimental test-bed for performance measurements.
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Dispatcher

PongerPongerPonger
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6.2.1. Event throughput and output performance. 

Figure 6(a) shows the maximum throughput rate computed

using the ping-pong experimental configuration. Figure 6(b)

shows the maximum event forwarding rate computed for the

same experiments. The X-axes are the number of Ponger

clients attached to the Selective Notification dispatcher in

the experiment. The Y-axis of Figure 6(a) is the chatter rate

of Pongers communicating with each other using Selective

Notification but in a worst-case, broadcast-like way. The Y-

axis of Figure 6(b) is the rate of output notifications from

the dispatcher.

Maximum throughput rates were calculated by varying

Ponger broadcast-chatter rates and determining the point of

throughput saturation, i.e., the point where the dispatcher

would begin falling behind permanently. This experiment

was performed with 10 second client-model attribute

updates and coagulation updates, and 60 second persistence

lifetimes for notifications. Ping notifications were sent

every two seconds.

In order to determine the factors affecting performance,

three versions of the Selective Notification dispatcher were

run in separate trials. The first (labelled SN in Figure 6) was

complete, the second (labelled Forward Only) performed

forwarding calculations but then simulated infinitely-fast

network communications, and the third (labelled TCP

Relay) blindly forwarded all notifications, i.e., it provided

no Selective Notification notification service. The results

(Figure 6) show that the throughput rate of Selective Notifi-

cation under worst-case forwarding conditions (broadcast-

like) is dominated by the cost of network communications.

The dispatcher performing all forwarding calculations but

only pretending to do network communications (Forward

Only) had twice the throughput of the dispatcher doing net-

work communication but only pretending to do forwarding

calculations (TCP Relay). Figure 6(b) shows that these costs

are governed by the total number of output events that must

be produced by the dispatcher. The measured rate of output

events shown in Figure 6(b) is nearly constant for a given

feature set (attributes in address and other parameters)

regardless of branching factor (number of Pongers). Thus,

the primary determination of throughput is the size of the set

of potential receivers. The cost is not comparable at ten

Ponger nodes because of domination by the cost of Java gar-

bage collection and other system activities occuring coinci-

dentally.

6.2.2. Effect of client model size on performance. 

The size of client models, i.e., the number of attributes in the

exposed address, has a significant impact on system perfor-

mance. A client-model’s size is measured by the number of

attributes in its address. This is proportional to half the size
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of the default filters generated for intentional addressing.

Figure 7 shows how the output notification rate of Selective

Notification varies with the size of the attribute model. This

experiment was performed with 60 second message persis-

tence, 10 second filter coagulation, and 50 Ponger applica-

tions. The second data point (5 model attributes)

corresponds roughly to the size of the attribute models in the

experiment from which data was collected in Figure 6.

6.2.3. Round-trip message time. Our experiments

recorded round-trip message time for ping and pong mes-

sage pairs. Figure 8 shows ping-pong time over the course

of an experiment in linear and logarithmic scale. The data is

from an experiment with 50 Pongers, with attribute changes

every ten seconds and notification persistence of 60 sec-

onds. Ten messages were input to the dispatcher per second,

so that the system was not processor-saturated. The experi-

ment was run for 200 seconds. Average round-trip time was

220 milliseconds, with a standard deviation of 430 millisec-

onds. Deviation occurs from persistent notification time-

outs, filter coagulation, clusters client model changes, and

Java garbage collection. Under the worst case example of

these conditions, round-trip time may be as high as three or

four seconds.

6.3 A Model of scale

From these experiments, it is clear that the throughput

of Selective Notification depends heavily on the number of

clients and dispatchers connected to a dispatcher, and on the

size of client models. Less important but still significant are

the rates of client attribute (model) changes. Using the mea-

surements from the previous section for a dispatcher operat-

ing in controlled conditions, we can estimate the maximum

throughput potential of Selective Notification in large dis-

tributed applications.

A hierarchy of Selective Notification dispatchers is

needed to reach large numbers of clients. Consider a system

with a million clients. Such a system could be served by a

three-level tree of dispatchers if the branching factor was

100. Figure 9 shows the estimated notification worst-case

throughput and worst-case delivery time for variations in

dispatcher-tree branching factor and resource dedication.

We consider dedicated dispatcher networks (labelled with

solid shapes) in which the dispatchers use all computational

resources, and peer dispatcher networks (labelled with

shape outlines) in which the dispatchers use one tenth of the

resources while clients use the remainder.

Using our current implementation, a dedicated dispatcher

tree with a branching factor of one thousand can support a

notification every three seconds and deliver events in four

seconds to a million elements. With a branching factor of

ten, a peer dispatcher tree can support four notifications per

second delivered in 60 seconds. Dedicated dispatchers at the
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higher levels of the tree and peer dispatchers at lower levels

can provide intermediate results for both notification rate

and throughput. 10,100 dedicated dispatchers at the base of

the tree with a branching factor of 100 followed by peer dis-

patchers with a branching factor of ten to the clients would

result in four notifications per second throughput with 24

second delivery time.

7. Conclusions

We have introduced a comprehensive and symmetric

approach to communication between managing entities and

managed entities that has immediate utility in dealing with

security attacks and other traumas that require rapid recon-

figuration of large networked information systems. Our

experimental assessment of our implementation suggests

that the approach scales and provides acceptable perfor-

mance. It might be possible to cope with worm attacks in

very large networks through rapid, targeted event dissemi-

nation as illustrated in Section 4.

While additional properties in management relationships

are necessary to implement loosely coupled management,

symmetric decoupled communication can serve as a back-

bone for potential architectures. These systems will allow

flexible, dynamic, and run-time management relationships

to reflect and change with system and manager state. As a

result, traditional management structures, such as hierarchy,

may be applicable to very large and dynamic systems. This

includes application to interface with more widely distrib-

uted and cooperative forms of management.

8. Acknowledgements

It is a pleasure to acknowledge many helpful discus-

sions about this work and about the Siena software system

with Antonio Carzaniga, Alex Wolf, and Dennis Heimbig-

ner. This work was supported in part by the Defense

Advanced Research Projects Agency under grant N66001-

00-8945 (SPAWAR) and the Air Force Research Laboratory

under grant F30602-01-1-0503. The views and conclusions

contained in this document are those of the authors and

should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or

implied, of DARPA, the Air Force, or the U.S. Government.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.

“The design and implementation of an intentional naming

system.” Operating Systems Review, Vol. 34 No. 5, pp 186-

2001, December 1999.

[2] A. Carzaniga, D. Rosenblum, A. Wolf. “Design and Evalua-

tion of a Wide-Area Event Notification Service.” ACM Trans-

actions on Computer Systems, Vol. 19, No. 3, pp. 332-383,

August 2001.

[3] A. Carzaniga, A. Wolf. “Content-based Networking: A New

Communication Infrastructure.” NSF Workshop on an Infra-

structure for Mobile and Wireless Systems. In conjunction

with the IEEE International Conference on Computer Com-

munications and Networks, Scotsdale AZ, October, 2001.

[4] G. Cugola. E. Di Nitto, A. Fuggetta. “The JEDI event-based

infrastructure and its application to the development of the

OPSS WFMS.” IEEE Transactions on Software Engineering,

Volume: 27 Issue: 9, pp 827 -850, September 2001.

[5] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec. “The Many

Faces of Publish/Subscribe.” Microsoft Research Technical

Report EPFL, DSC ID:2000104, January 2001.

[6] B. Gerkey, M. Mataric. “Murdoch: Publish/Subscribe Task

Allocation for Heterogeneous Agents.” Fourth ACM Interna-

tional Conference on Autonomous Agents, Barcelona, Spain,

June 2000.

[7] R.S. Hall, D. Heimbigner, A.L. Wolf. “A Cooperative

Approach to Support Software Deployment Using the Soft-

ware Dock.” IEEE/ACM International Conference on Soft-

ware Engineering, Los Angeles CA. May 1999.

[8] D. Heimbigner. “Adapting publish/subscribe middleware to

achieve Gnutella-like functionality.” Eighth Annual Work-

shop on Selected Areas in Cryptography, pp 176-181, Tor-

onto, Canada, 2001.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin. “Directed Diffu-

sion: A Scalable and Robust Communication Paradigm for

Sensor Networks.” ACM International Conference on Mobile

Computing and Networking, Boston MA. August 2000.

[10] J. Martin-Flatin, S. Znaty, J. Hubaux. “A Survey of Distrib-

uted Network and Systems Management Paradigms.” Journal

of Network and Systems Management, Vol.7, No. 1, pp 9-22.

1999

[11] N. Skarmeas, K.L. Clark. “Content based routing as the basis

for intra-agent communication.” Fifth International Workshop

on Intelligent Agents(V): Agent Theories, Languages, and

Architectures, Paris, France, July 1998.

[12] W. Vogels, C. Re, R. van Renesse, K. Birman. “A Collabora-

tive Infrastructure for Scalable and Robust News Delivery.”

IEEE Workshop on Resource Sharing in Massively Distrib-

uted Systems, Vienna, Austria, July 2002.

[13] R. van Renesse, K. Birman. “Scalable Management and Data

Mining Using Astrolabe.” First International Workshop on

Peer-to-Peer Systems. Cambridge, Massachusetts. March

2002.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04) 
0-7695-2052-9/04 $ 20.00 © 2004 IEEE 


